Hevylite: New strategies for Diagnosis, Monitoring and Prognosis of monoclonal gammopathies

> AR Bradwell. University of Birmingham and Binding Site Ltd

How good are tests for monoclonal monoclonal proteins?

1. Diagnosis – sensitive and specific + +

FLC

+

gs

+/-

_

- 2. Monitoring reproducible +
- 3. Prognostic

Diagnosis

Problems with IgG, IgA and IgM assays

- 1. There is no $Ig\kappa/Ig\lambda$ ratio
- 2. Nephelometry measures the total immunoglobulin but the patient is $Ig'\kappa$ or $Ig'\lambda$

SPE Analysis of MRC MM VII Presentation Samples

Problems with IgG, IgA and IgM assays

- 1. There is no $Ig\kappa/Ig\lambda$ ratio
- 2. Nephelometry measures the total immunoglobulin but the patient is $Ig'\kappa$ or $Ig'\lambda$
- 3. Scanning densitometry is not accurate
- 4. IgA bands may be hidden with transferrin

Immunoglobulin molecule and Hevylite (HLC) epitopes

Different heavy chain/light chain immunoglobulins

IgA Multiple Myeloma

Monitoring

Problems with IgG, IgA and IgM assays

- 1. There is no $Ig\kappa/Ig\lambda$ ratio
- 2. Nephelometry measures the total immunoglobulin but the patient is $Ig'\kappa$ or $Ig'\lambda$
- 3. Scanning densitometry is not accurate
- 4. IgA bands may be hidden with transferrin
- 5. Haematocrit and plasma volume changes affect immunoglobulin measurements

Effect of volume changes on Ig' measurements

lgGκ- 50g/L lg'κ/lg'λ = 3/1 lgGκ- 30g/L lg'κ/lg'λ = 3/1 lgGκ- 20g/L lg'κ/lg'λ = 3/1

Relationship of monoclonal immunoglobulin changes to plasma volume and haematocrit

Alexanian. Blood 1977 49: 301-307

Problems with IgG, IgA and IgM assays

- 1. There is no $Ig\kappa/Ig\lambda$ ratio
- 2. Nephelometry measures the total immunoglobulin but the patient is $Ig'\kappa$ or $Ig'\lambda$
- 3. Scanning densitometry is not accurate
- 4. IgA bands may be hidden with transferrin
- 5. Haematocrit and plasma volume changes affect immunoglobulin measurements
- 6. IgG metabolism is variable

IgG metabolism is controlled by cellular recycling receptors

IgG FcRn receptors are saturated at normal IgG concentrations

Relationship between immunoglobulin concentrations and serum half-life

Hence, % changes in IgG measurements depend upon the initial concentrations

For example:-

A patient with 100g/L of IgG and 100% tumour kill by chemotherapy has an 80% fall of IgG in 15 days (100 to 20g/L)

A patient with 10g/L of IgG and 100% tumour kill by chemotherapy has only a 20% fall of IgG in 15 days (10 to 8g/L)

Thus, comparison of reductions in IgG concentrations in patients is not reliable

What does a partial response really mean?

What does a partial response really mean?

Bradwell et al. Clin Chem 2009

Problems with IgG, IgA and IgM assays

- 1. There is no $Ig\kappa/Ig\lambda$ ratio
- 2. Nephelometry measures the total immunoglobulin but the patient is $Ig'\kappa$ or $Ig'\lambda$
- 3. Scanning densitometry is not accurate
- 4. IgA bands may be hidden with transferrin
- 5. Haematocrit and plasma volume changes affect Immunoglobulin measurements
- 6. IgG metabolism is variable
- 7. Monoclonal IgG, IgA and IgM measurements have no prognostic value and are not in any guidelines

Monoclonal immunoglobulin concentrations

Hevylite ratios - 0.01>HLCr>200

Un-involved immunoglobulins

Comparison of prognostic factors in MM

Covariates	Univariate Analysis	Multivariate Analysis (n=242)
Del_13	0.03* (n=283)	0.546
T4_14	0.05* (n=252)	0.515
Del_17p	0.08 (n=277)	0.457
β_2 M>5.5mg/L	0.51 (n=308)	0.407
β_2 M>3.5mg/L	0.001* (n=308)	0.045*
Albumin<35g/L	0.153 (n=302)	0.828
FLC Tertiles	0.589 (n=307)	0.689
Monoclonal Tertiles**	0.16 (n=300)	0.748
200 <hlc<0.01< td=""><td>0.017* (n=308)</td><td>0.001*</td></hlc<0.01<>	0.017* (n=308)	0.001*

* p<0.05 is considered significant**SPE densitometry measurement

Conclusions for Hevylite

- Diagnosis: More sensitive than SPE and IFE in patients at presentation and with residual disease
- 2. **Monitoring**: Provides more accurate quantitation than SPE and IFE, particularly at low concentrations
- 3. Prognosis: Better than current markers

Acknowledgements

J Katzmann, RA Kyle, Mayo Clinic. Herve Avet-Loiseau, Ladan Mirbahai, Jean-Luc Harousseau, IFM, France C Hutchison, P Cockwell, Birmingham University, UK S Harding, H Carr-Smith, G Mead, P Showell, J Overton and others at The Binding Site

What makes a good cancer test?

- 1. Diagnosis sensitive and specific
- 2. Monitoring quantitative and reproducible
- 3. Prognostic

sFLCs at myeloma presentation are prognostic

ISS for progression in 338 IFM patients

