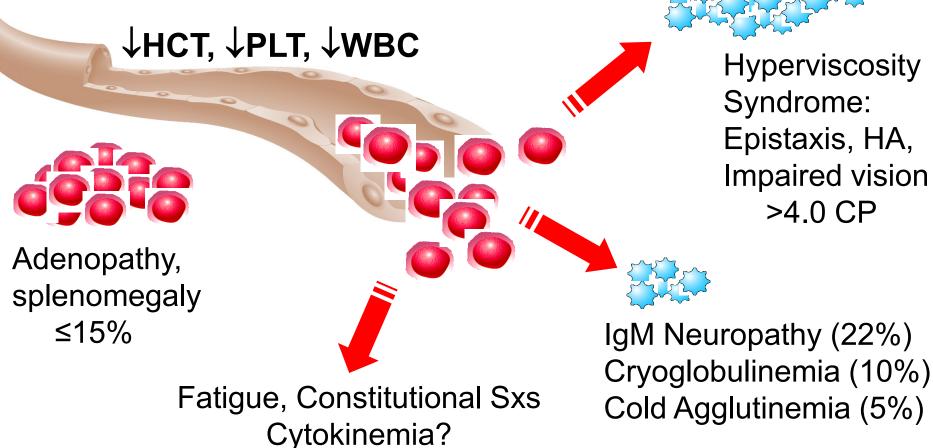
Workshop of the Czech Myeloma Group Mikulov 11.4.2015

Waldenström's Macroglobulinema – Current treatment approaches

Prof. Dr. C. Buske

Integratives Tumorzentrum des Universitätsklinikums und der Medizinischen Fakultät

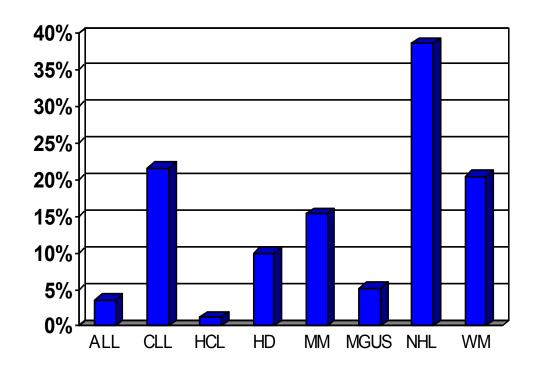
Comprehensive Cancer Center



Workshop of the Czech Myeloma Group Mikulov 11.4.2015

Waldenström's Macroglobulinema – what should we know before starting treatment

Clinicopathologic Manifestations of WM


Treon SP et al. Cancer Treat Res. 2008;142:211-242.

Hyperviscosity Syndrome: Epistaxis, HA, Impaired vision >4.0 CP

Genetic Predisposition

Familial disease predisposition in WM

N=1076 consecutive patients with clinicopathological diagnosis of WM 26.1% of WM patients have a first or second degree relative with a B-cell LPD.

Distribution of B-cell LPD in relatives of 281 Familial WM patients.

Waldenström's Macroglobulinemia - the first problem -

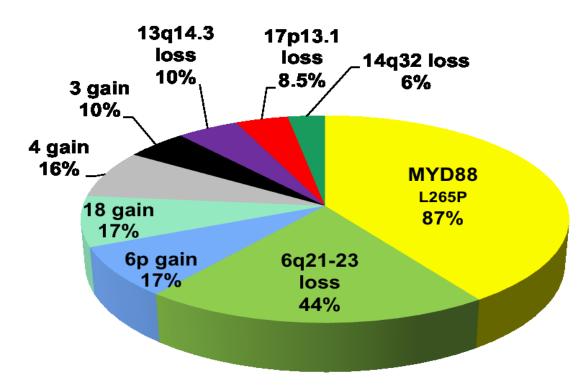
• <u>WM is a rare disease (orphan disease!)</u>

It accounts for:

- 1–2% of hematological neoplasms,
- with a reported age-adjusted incidence rate **of 3.4 per million among the male** population and 1.7 per million among the female population in the United States,
- and 7.3 and 4.2 per million, respectively, in the European standard population.

→ Implications: no drugs approved (Ibrutinib now by the FDA), hardly any larger clinical trials, weak ,lobby', innovations depending on drug development in other lymphomas

Waldenström's Macroglobulinemia - the second problem -


- WM is a disease of the elderly!
- Median age 63–68 years at diagnosis

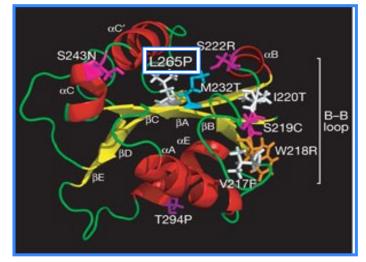
→ Implications: for the majority of patients dose intense approaches not feasible! Eradication of lymphoma not realistic with current treatment approaches!

Waldenström's Macroglobulinemia - Molecular Biology – should we care at all?

Molecular Abnormalities in WM

Recurrent chromosomal abnormalities and prevalence in WM

Cancer implicated genes


- r. 3 MYD88L265P mutation
- r. 6q21-23 loss PRDM1
- r. 17p13 loss p53
- r. 13q14.3 loss miRNA-15, 16
- r. 14q32 TRAF3
- r. 4 gain unknown
- r. 6p gain unknown
- r. 3 gain unknown

logica 2012; Poulain et al Clin Lymp Myel 2011(11); Roccaro et al Blood 2009(113); Treon et al NEJM 2012(367)

MYD88 Mutation

Treon et al

- Whole Genome Seq. of 30 WM patients, validated by Sanger Seq.
- Sanger Seq. identified MYD88 L265P in 90% of patients (27/30 WM samples)
- 22/26 patients were heterozygous for MYD88 L265P
- 9/9 patients with familial WM carried mutant MYD88 L265P
- 2/21 patients with IgM-MGUS had MYD88
 L265P expression

3-D structure of MY88 TIR domain

Base pair mismatch Leuc \rightarrow Pro at position 265 in MYD88 coding region

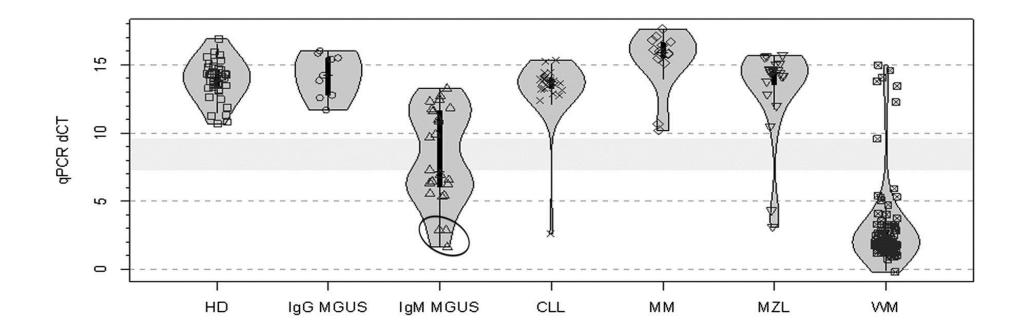

MYD88 - a diagnostic marker

Table 1. MYD88 L265P expression in WM and IgM MGUS						
Authors	Reference	Tissue	Method	MYD88 L265P positive/total number of WM patients tested, n/N (%)	MYD88 L265P positive/total number of IgM MGUS patients tested, n/N (%)	
Treon <i>et al</i> .	5	BM CD19+	WGS/Sanger	49/54 (91)	2/21 (10)	
Gachard <i>et al</i> .	22	BM	PCR	21/31 (67)	ND	
Xu et al.	23	BM CD19+	AS-PCR	97/104 (93)	13/24 (54)	
Varettoni <i>et al</i> .	24	BM	AS-PCR	58/58 (100)	36/77 (47)	
Landgren and Staudt	25	BM	Sanger		5/9 (56)	
Jimenez et al.	26	BM	AS-PCR	100/117 (86)	27/31 (87)	
Ansell <i>et al</i> .	27	NA	WGS/Sanger/AS-PCR	38/39 (97)	ND	
Poulain <i>et al</i> .	37	BM CD19+	PCR	54/67 (80)	ND	

Abbreviations: AS-PCR, allele-specific PCR; BM, bone marrow; MYD88, myeloid differentiation factor 88; not applicable; ND, not determined; PCR, polymerase chain reaction; WGS, whole genome sequencing; WM, Waldenström's Macroglobulinemia.

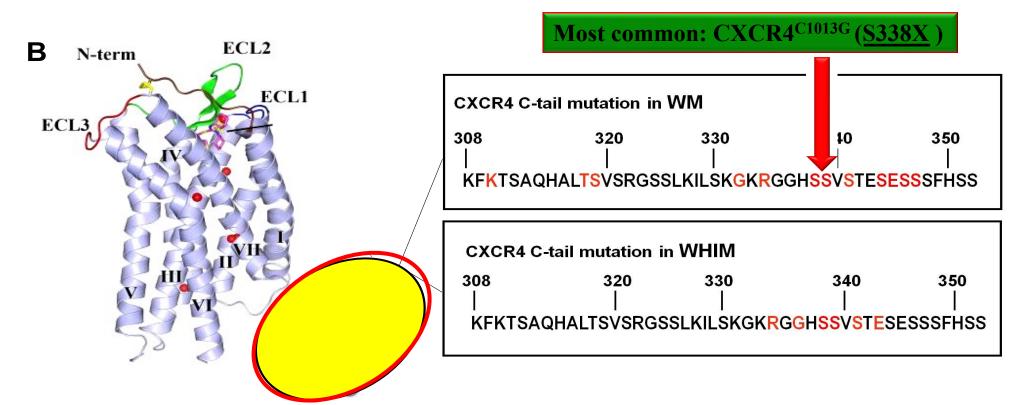
Landgren & Tageja, Leukemia 2014

Real-time AS-PCR results for MYD88 L265P in samples from patients with WM, IgM MGUS, and other B-cell lymphoproliferative disorders.

Xu L et al. Blood 2013;121:2051-2058

Real-time AS-PCR results for MYD88 L265P as a surrogate marker for tumor burden?

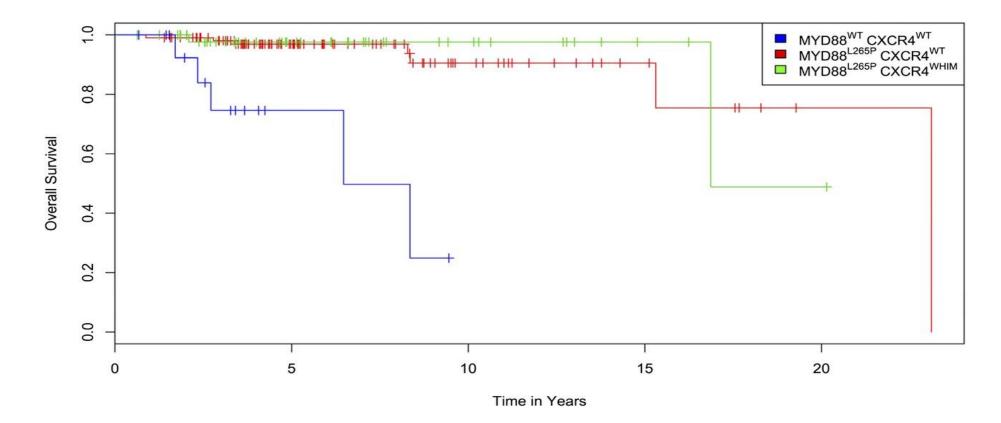
Table 1. Comparison of MYD88 L265P before and after treatment using real-time AS-PCR in patients with WM


Patient	Age (years)	Gender	Treatment	Pre-/posttherapy BM involved, %	Pre-/posttherapy MYD88 L265P levels	Change in BM involved, %	Change in MYD88 L265P levels, %
A	61	Male	Benda-R	70	78.45	-100	-100
				(negative)	(negative)		
В	44	Male	R-CD	90	60.73	-89	-96.33
				10	2.23		
С	52	Male	R-CD	50	72.12	-90	-73.61
				5	19.03		
D	59	Male	Everolimus	95	99.15	-47	-45.39
				50	54.15		
E	63	Male	Everolimus	90	96.07	-67	-21.03
				30	75.87		
F	70	Male	Everolimus	95	95.93	-37	-8.61
				60	87.67		
G	63	Male	Everolimus	20	67.93	25	12.87
				25	76.67		

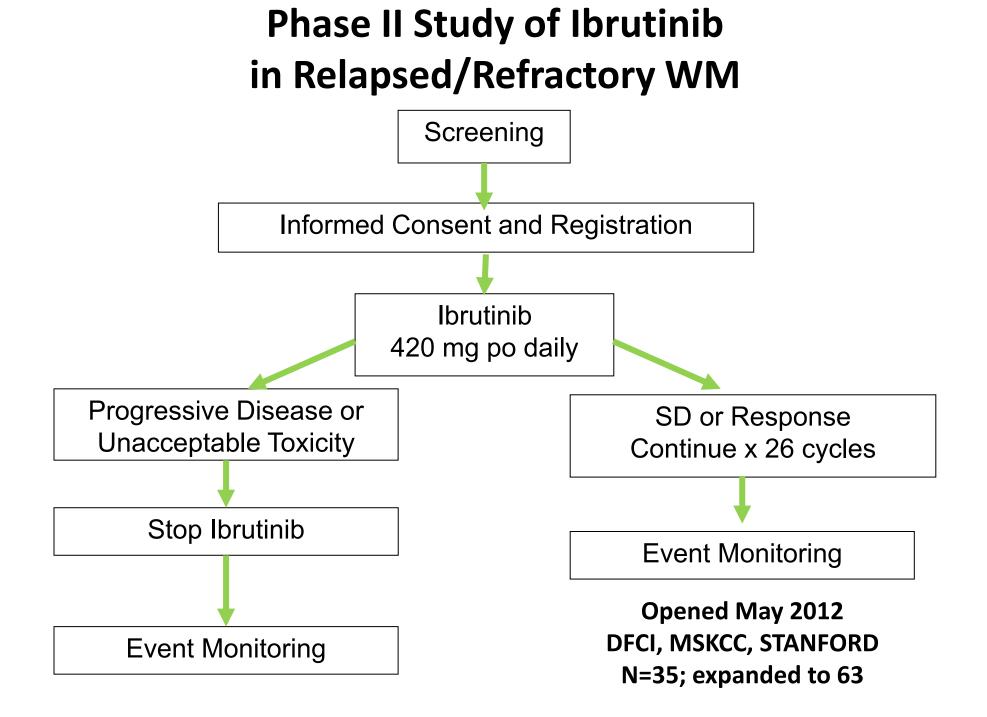
Changes in expression levels for MYD88 L265P were calculated from a standard curve.

Benda-R, bendamustine and rituximab; R-CD, rituximab, cyclophosphamide, and dexamethasone.

WHIM-like CXCR4 C-tail mutations in WM


Warts, Hypogammaglobulinemia, Infection, and Myelokathexis.

Somatic WHIM-CXCR4 Mutations are present in WM patients: 8/30 (27%) by WGS ; 47/152 (31%) by Sanger Sequencing.


Hunter et al, JCO 2012; 30(15); Abstract 8107; Blood (Manuscript in Press)

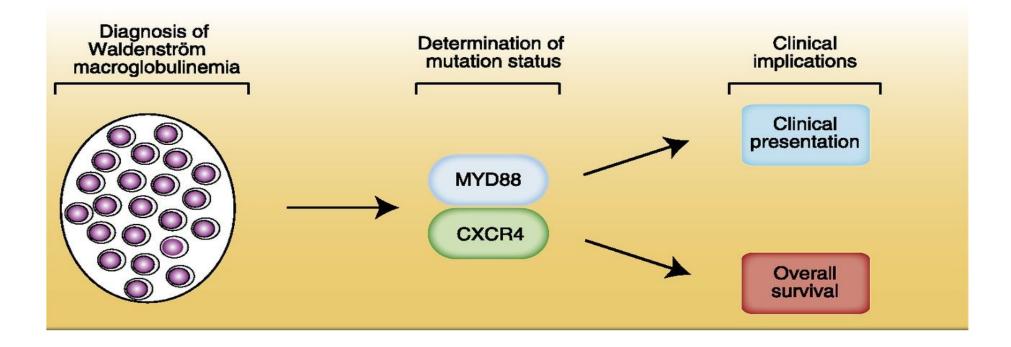
Kaplan-Meier plot for overall survival of 175 WM patients from time of diagnosis stratified by MYD88 and CXCR4 mutation status.

Treon S P et al. Blood 2014;123:2791-2796

MYD88 /CXCR4 status and Ibrutinib Major Responses

MYD88	N=	VGPR/PR	MR/SD/NR
L265P	48	31 (65%)	17 (35%)
Wild Type	5	2 (40%)	3 (60%)

p = 0.3536 Odds ratio = 2.68 95% CI 0.28-35.02


CXCR4	N=	VGPR/PR	MR/SD/NR
WHIM	10	3 (30%)	7 (70%)
Wild Type	30	24 (80%)	6 (20%)

p = 0.0065 Odds ratio = 0.115 95% CI 0.02-0.68

Data Lock November 8, 2013

Treon et al, Blood 2013; 122(21): Abstract 251

Determination of the MYD88 and CXCR4 mutation status in WM has clinical implications.

Lenz G Blood 2014;123:2750-2751

©2014 by American Society of Hematology

Workshop of the Czech Myeloma Group Mikulov 11.4.2015

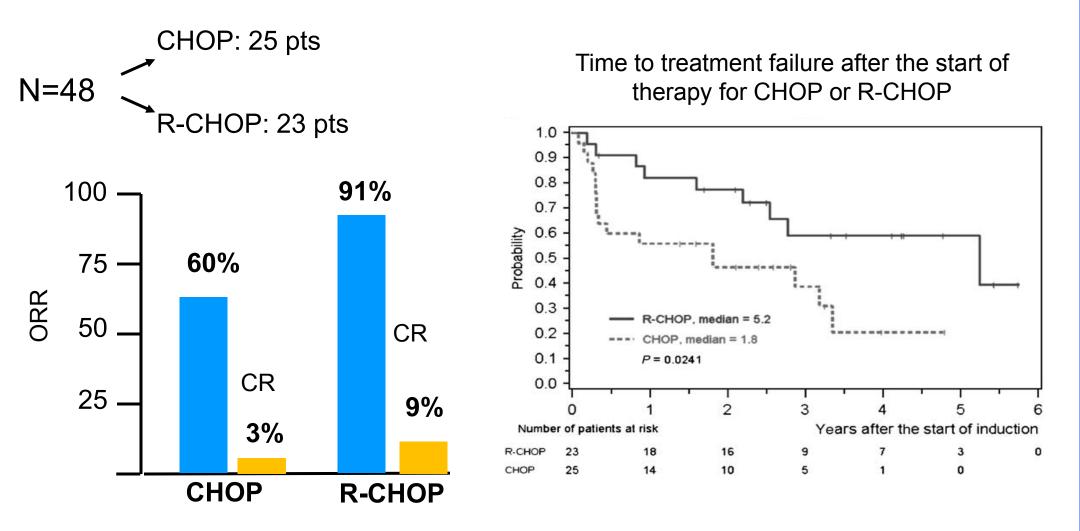
• • • CLINICAL TRIALS & OBSERVATIONS

Comment on Flinn et al, page 3406; and Kahl et al, page 3398; and Brown et al, page 3390

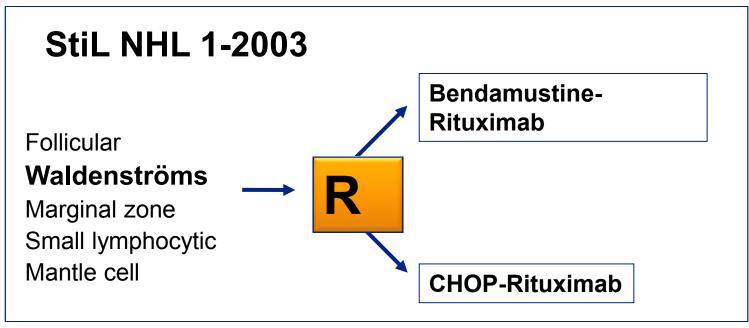
CLL and NHL: the end of chemotherapy?

Bruce D. Cheson GEORGETOWN UNIVERSITY HOSPITAL

"The times they are a changin"—Bob Dylan


In this issue of *Blood*, Flinn et al, Kahl et al, and Brown et al provide further encouragement that the possibility of a chemotherapy-free world is, indeed, a rapidly approaching reality in indolent non-Hodgkin lymphomas (NHLs), mantle cell lymphoma (MCL), and chronic lymphocytic leukemia (CLL).¹⁻³

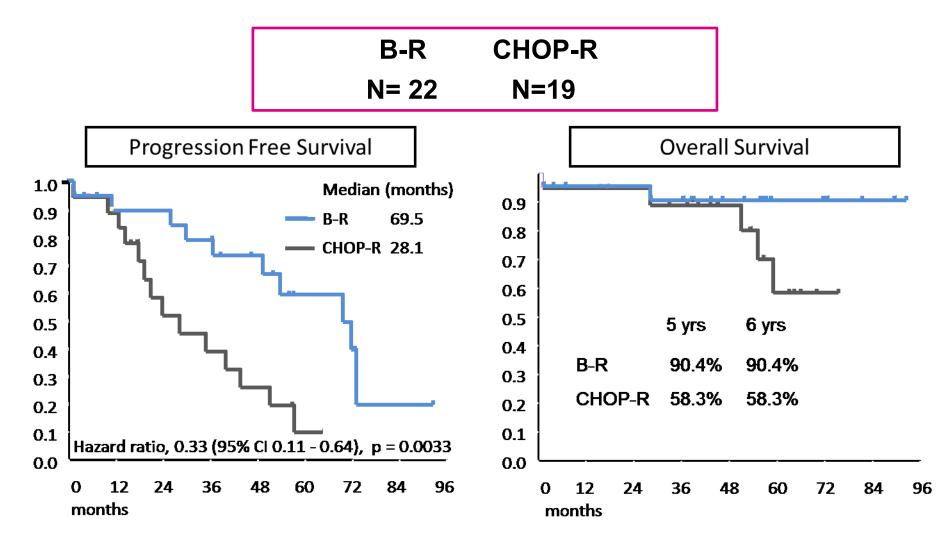
Chemotherapy still one of the backbones In WM treatment!



CHOP Vs Rituximab-CHOP in WM

Buske et al, Leukemia 2009

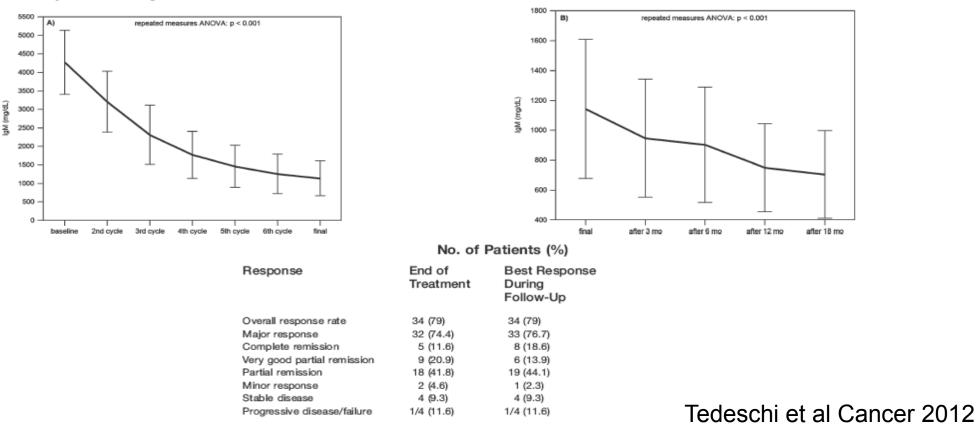
Bendamustine-Rituximab (B-R) vs CHOP-R



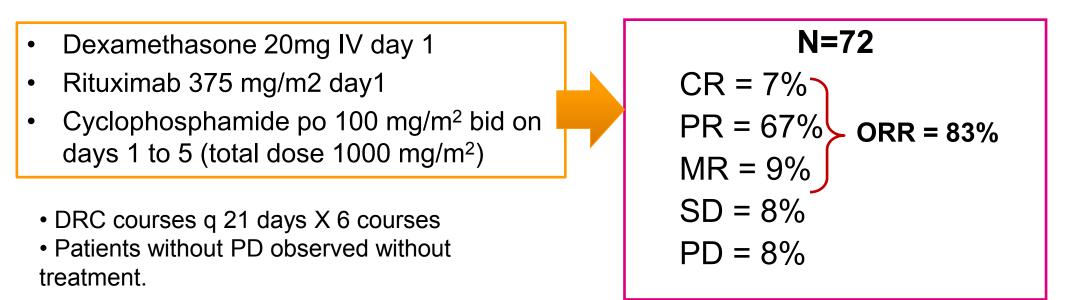
Bendamustine 90 mg/m² day 1+2 + R day 1, max 6 cycles, q 4 wks. CHOP-R, max 6 cycles, q 3 wks.

N=41 evaluable	Benda-R (N=22)	CHOP-R (N=19)
Response rate	21 (95%)	18 (95%)

Rummel M, IMW7, Newport 2012 & Rummel et al Lancet 2013


B-R vs CHOP–**R as First-Line Treatment** (subanalysis of the StiL NHL1 study in WM patients)

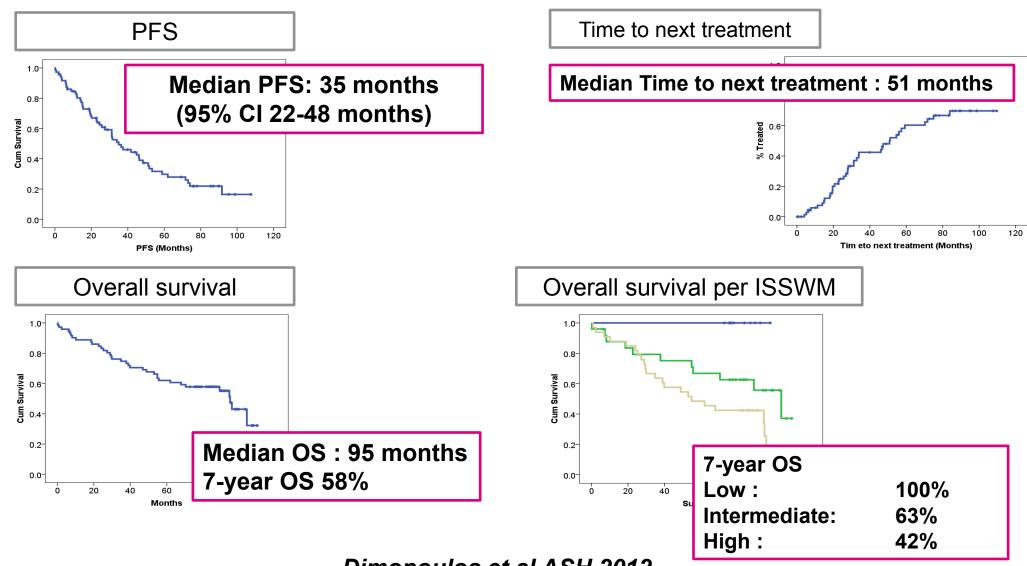
Rummel et al Lancet 2013


FCR in previously untreated or pretreated patients

ORR was 79% An improvement of the quality of responses was observed during follow-up *Toxicity was significant*

De-escalating chemotherapy!

Phase II study of DRC regimen in patients with previously untreated symptomatic WM



Median time to 50% IgM reduction was 4.1 months (range, 0.7-14) IgM flare in 32%, <u>></u>25% IgM increase in 11%

Dimopoulos et al J Clin Oncol 2007

DRC : long follow up

(Median follow up for patients still alive >7 years)

Dimopoulos et al ASH 2012

DRC : long follow up Second line therapy

40 (55%) patients have received second line treatment

		N=40	Response (MR or better)
Rituximab-based	Rituximab-alone	7 (17.5%)	
(70%)	DRC	11 (27.5%) 23 (8	23 (82%)
	Rituximab+other agents	10 (25%)	20 (02 /0)
Non-Rituximab (30%)	Alkylating agents	5 (12.5%)	
	Nucleoside analogs	4 (10%)	8 (67%)
	Bortezomib	2 (5%)	
	HDT	1 (2.5%)	

Dimopoulos et al ASH 2012

DRC – Toxicities

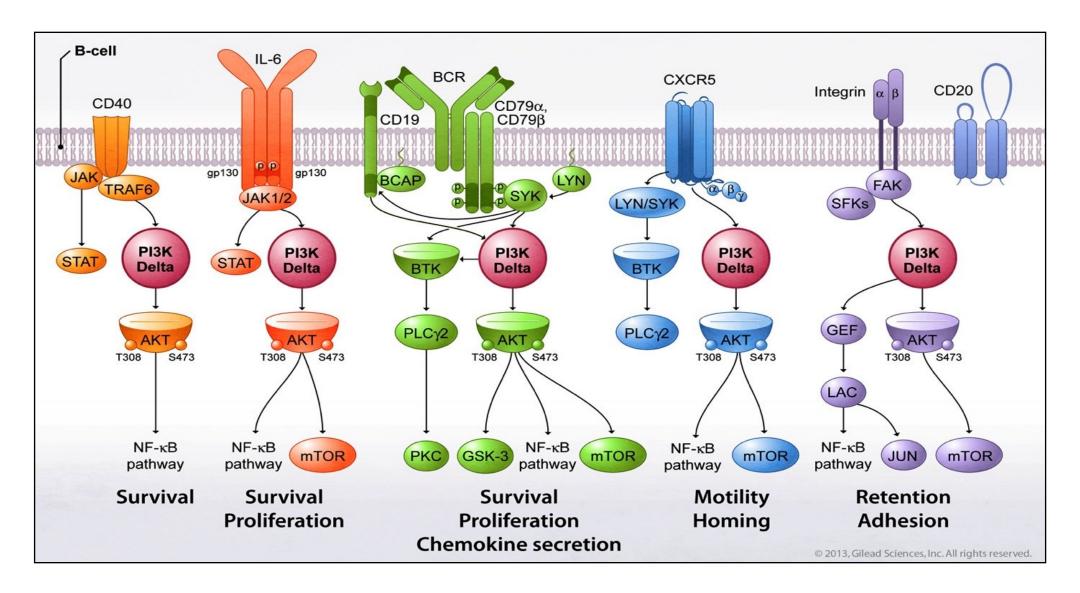
Table 2. Toxicity of Tre	Treatment With DRC (percentage of patients affected)				ected)
			Grade		
Toxicity	0	1	2	3	4
Neutropenia	66	15	10	7	2
Thrombocytopenia	93	7	0	0	0
Nausea/vomiting	62	25	13	0	0
Chills/fever	84	12	4	0	0
Headache	81	15	2	2	0
Hypotension	94	2	0	4	0

18

4

Abbreviation: DRC, dexamethasone, rituximab, and cyclophosphamide.

78


Alopecia

Dimopoulos et al., JCO 2007

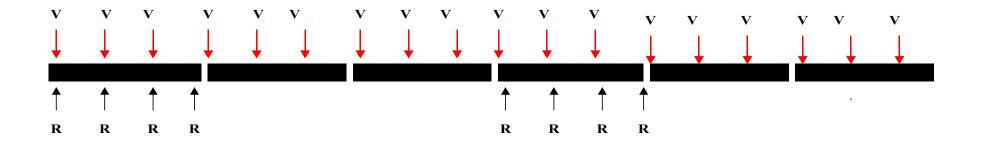
0

0

Searching the Magic Pill in WM

How can we improve..... 'novel agents'?

- 1. Tha omid
- 2. Len domid
- 3. Bortezomib
- 4. Ixazomib
- 5. Enza aurin
- 6. Ibrutinib
- 7. Idelalisib

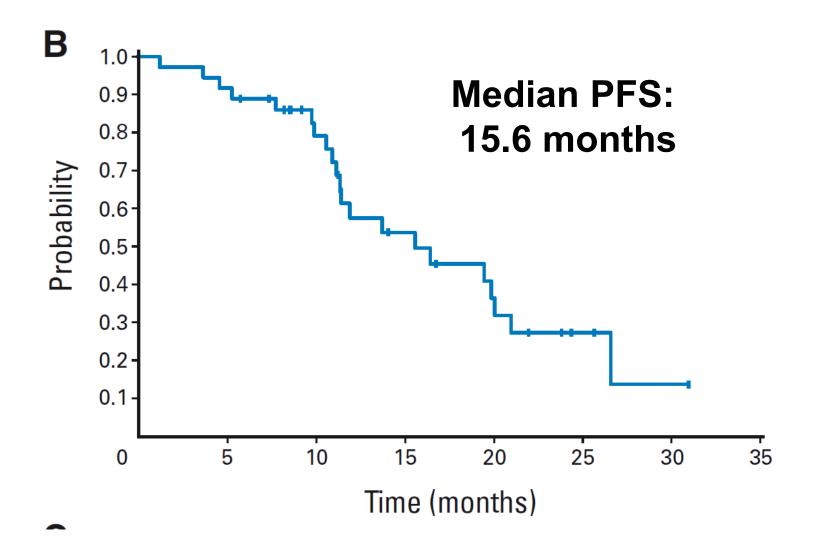

Bortezomib/Rituximab

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Phase II Trial of Weekly Bortezomib in Combination With Rituximab in Relapsed or Relapsed and Refractory Waldenström Macroglobulinemia

Irene M. Ghobrial, Fangxin Hong, Swaminathan Padmanabhan, Ashraf Badros, Meghan Rourke, Renee Leduc, Stacey Chuma, Janet Kunsman, Diane Warren, Brianna Harris, Amy Sam, Kenneth C. Anderson, Paul G. Richardson, Steven P. Treon, Edie Weller, and Jeffrey Matous



1 cycle	e=28 days	
V	Bortezomib	$1.6 \text{ mg/m}^{-2} \text{ days } 1, 8, 15 \text{ q } 28 \text{ days } x 6 \text{ cycles}$
R	Rituximab	375 mg/m^{-2} days 1, 8, 15, 22 on cycles 1 and 4

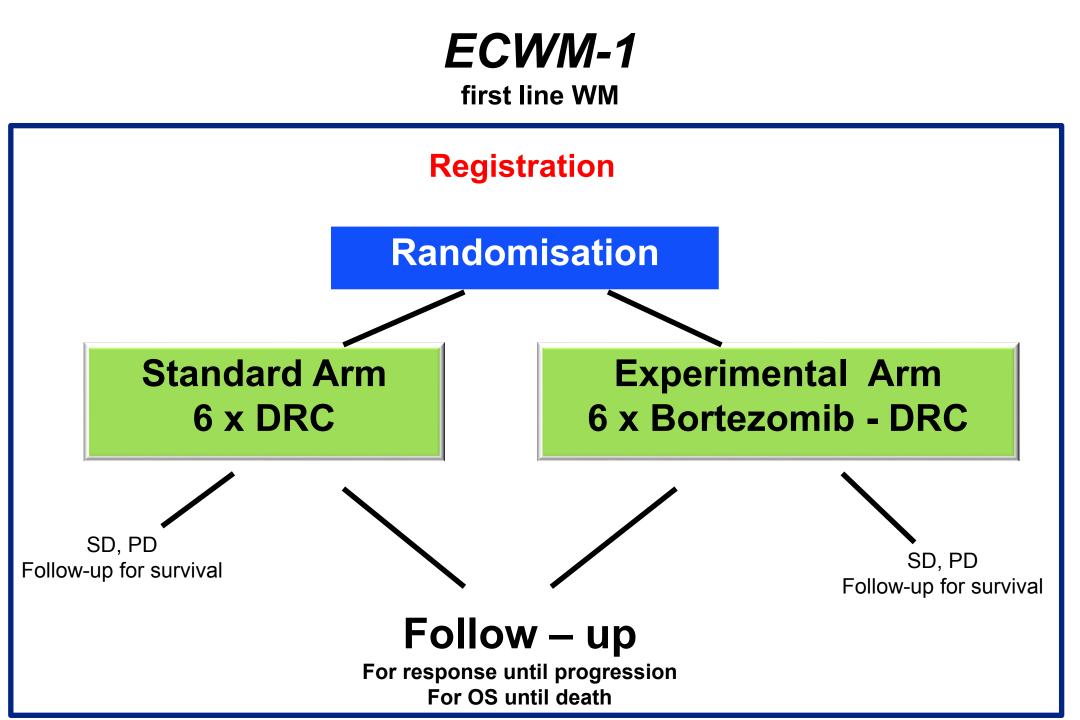
BR – Response Rates

	M Spike		lgM by Nephelometry	
Response	No.	%	No.	%
CR	1	3	2	Ę
nCR	1	3	NA	
PR	17	46	21	5
MR	11	30	9	24
SD	4	11	2	ĺ
PD	1	3	1	
Unevaluable	2	5	2	Į
$CR + nCR + PR + MR^*$	30	81	32	8
CR + nCR + PRt	19	51	23	62

BR – Progression Free Survival

Toxicities

	Grade 1 to 2		Grade 3 to 4		Grade 5	
Toxicity	No.	%	No.	%	No.	%
Hematologic						
Hemoglobin	30	81	4	11		
Leukocytes	19	51	5	14		
Lymphopenia	3	8	9	24		
Neutrophils	11	30	6	16		
Thrombocytopenia	14	37	5	13		
Gastrointestinal						
Diarrhea	14	37				
Constipation	4	11				
Nausea	11	30				
Vomiting	4	11				
Infections						
Infection, conjunctivitis	6	16				
Infection, respiratory	3	8			1	3
Herpes Zoster reactivation	4	11				
Electrolytes and liver function studies						
Hyponatremia	4	11				
Hyperglycemia	16	43				
Alkaline phosphatase	6	16				
AST	6	16				
Neurologic/pain/others						
Peripheral neuropathy	15	41	2	5		
Muscle pain	4	11				
Fatigue	25	68				
Dizziness	4	11				
Allergic reaction	11	30				


European Consortium for WM ECWM-1 study

Efficacy of first line Dexamethasone, Rituximab and Cyclophosphamide (DRC) +/- Bortezomib for patients with Waldenström's Macroglobulinaemia (ECWM-1)

-a multicenter, open, two-arm, open label, randomized phase III trial

Patient recruitment	384 patients based on the statistical analysis plan	EC.WAA
Number of study centers	Approximately 100	E.
Duration of recruitment	Approximately 3.3 years	
Involved study groups	11 European Study groups	European Consortium for Waldenström's Macroglobulinemia

Clinicaltrials.gov : NCT01788020

Phase II Study of the Bruton's Tyrosine Kinase (Btk) Inhibitor Ibrutinib in Waldenstrom's Macroglobulinemia

Steven P. Treon Dana-Farber Cancer Institute

Stanford University Medical Center

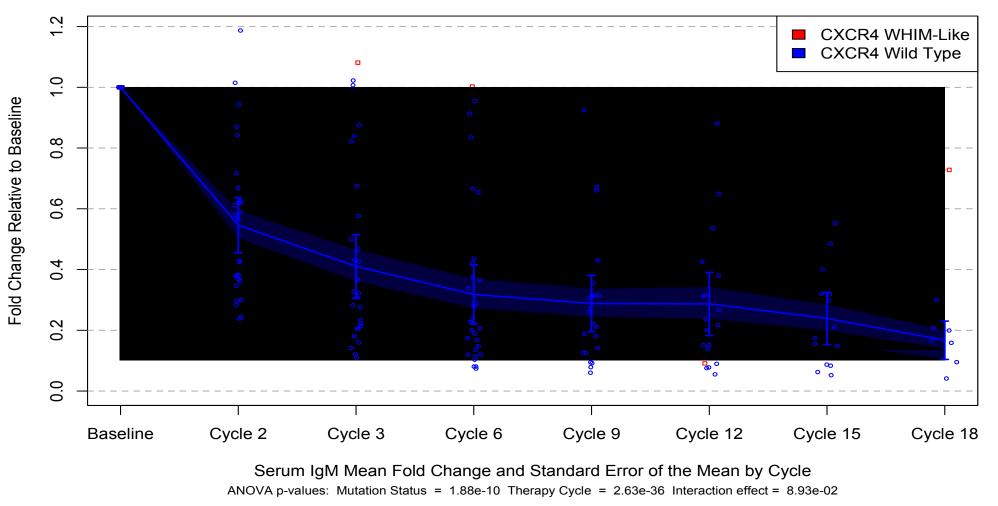
SCHEMA FOR MULTICENTER PHASE II STUDY OF IBRUTINIB IN RELAPSED/REFRACTORY WM

Clinical Responses to Ibrutinib Median of 9 (range 1-18) Cycles

	(N= 63)	(%)
VGPR	10	15.9
PR	36	57
MR	11	17.5

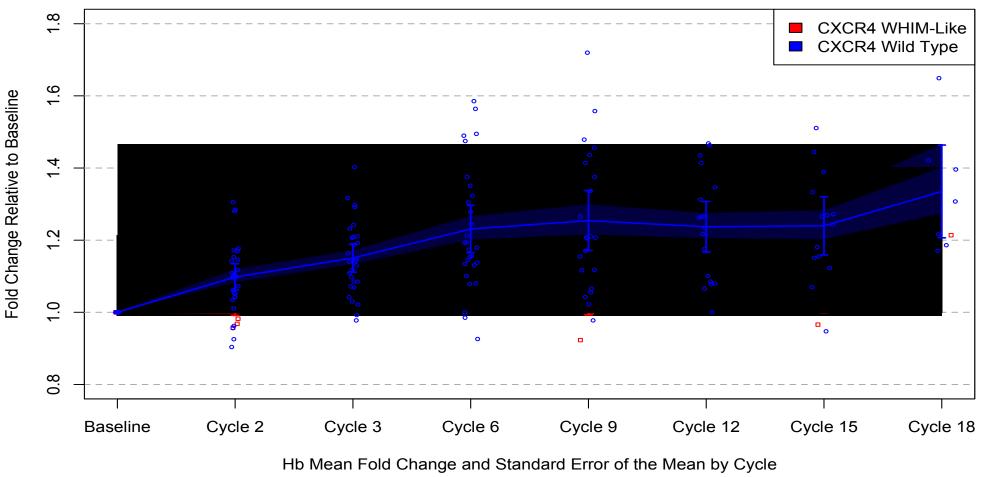
Response criteria adapted from 3rd International Workshop on WM (Treon et al, BJH 2011)

ORR: 90.5% Major RR (> PR): 73%


Treon et al, NEJM 2015

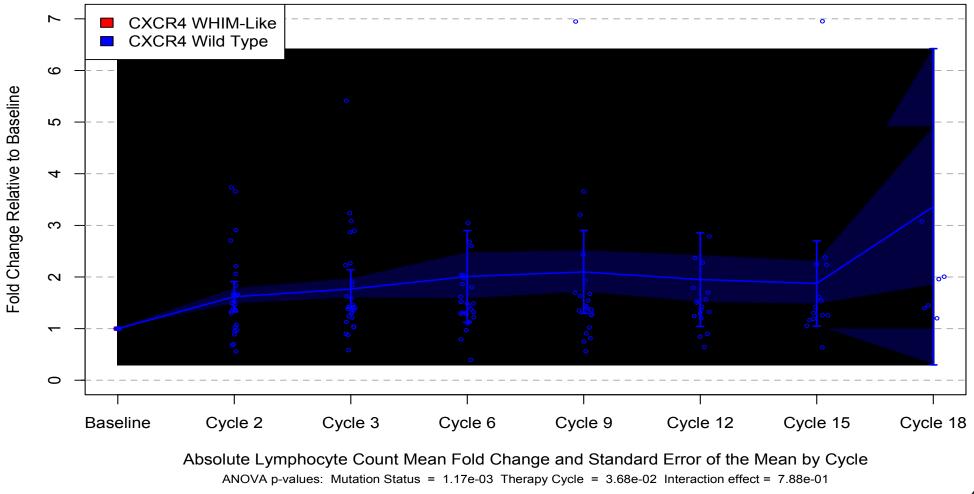
Subgroup Analyses of Responses.

	No. of			1.2.17
Subgroup	Patients	Overall	Response Rate (95%	CI)
All patients	63		⊢− ●−1	90.5 (80.4–96.4)
Age			1	
<65 yr	32			93.8 (79.2–99.2)
≥65 yr	31		⊢÷ i	87.1 (70.2–96.4)
ECOG score at baseline			1	
0	47		⊢	91.5 (79.6–97.6)
≥l	16		⊢ – – – – – – – – – – – – – – – – – – –	87.5 (61.7–98.4)
Waldenström's macro- globulinemia IPSS				
Low	15		⊢i•i	93.3 (68.1–99.8)
Intermediate	27		⊢	92.6 (75.7–99.1)
High	21		⊢ −−	85.7 (63.7–97.0)
β_2 -microglobulin			1	
≤3 mg/liter	18		⊢;●_	94.4 (72.7–99.9)
>3 mg/liter	43		⊢ −− ● <mark>−</mark> −1	88.4 (74.9-96.1)
Hemoglobin level				
≤ll g/dl	38		⊢	92.1 (78.6-98.3)
>ll g/dl	25		⊢i	88.0 (68.8–97.5)
lgM			1	
<4000 mg/dl	37		н 	89.2 (74.6–97.0)
≥4000 mg/dl	26		⊢ 	92.3 (74.9–99.1)
Bone marrow disease involvement				
<50%	23		► −− ••	78.3 (56.3-92.5)
≥50%	39		⊢ <u>i</u> ●	97.4 (86.5–99.9)
Disease status				
Relapsed	37		⊢ <u>¦</u> ●-1	94.6 (81.8–99.3)
Refractory	25			84.0 (63.9–95.5)
No. of previous treatment regimens				
1-3	40		⊢	90.0 (76.3–97.2)
>3	23		► ↓	91.3 (72.0–98.9)
Mutation				
MYD88 ^{WT} CXCR4 ^{WT}	7	H	• <u></u>	71.4 (29.0–96.3)
MYD88 ^{L265P} CXCR4 ^{WT}	34		ų́	100.0 (89.7–100.
MYD88 ^{L265P} CXCR4 ^{WHIM}	21		► •	85.7 (63.7–97.0)
	Г 0	20 40	60 80 100)

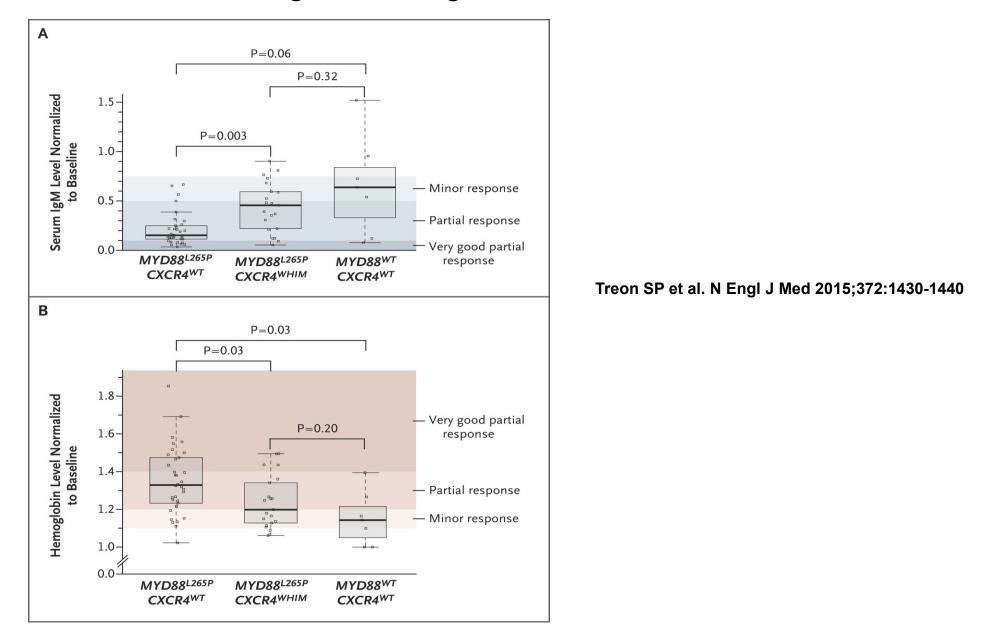

Treon SP et al. N Engl J Med 2015;372:1430-1440

Serial changes in serum IgM levels following Ibrutinib Stratified by CXCR4 status

Treon et al, Blood 2013; 122(21): Abstract 251

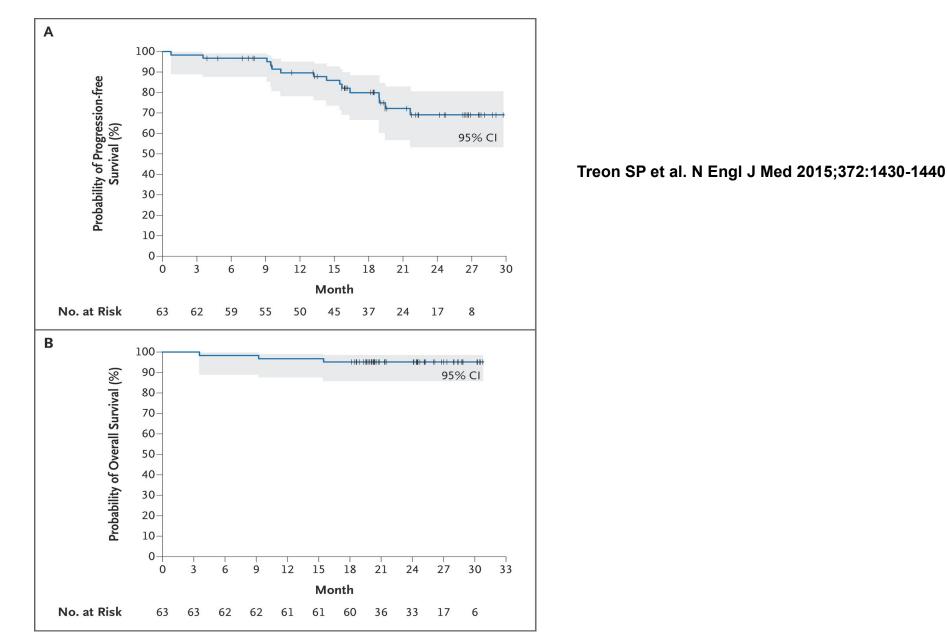

Serial Hemoglobin levels following Ibrutinib Stratified by CXCR4 status

ANOVA p-values: Mutation Status = 9.75e-07 Therapy Cycle = 8.13e-16 Interaction effect = 8.64e-02


Treon et al, Blood 2013; 122(21): Abstract 251

Serial Peripheral Lymphocyte Counts following Ibrutinib Stratified by CXCR4 status

Treon et al, Blood 2013; 122(21): Abstract 251


Effect of *MYD88* and *CXCR4* Mutation Status on Ibrutinib-Related Changes in Serum IgM and Hemoglobin Levels.

MYD88 /CXCR4 status and Ibrutinib Responses

MYD88/ CXCR4	OR	VGPR/PR
+/-	100 %	91.2%
+/+	85.7 %	61.9%
/	71.4%	28.6%

Kaplan–Meier Curves for Progression-free and Overall Survival.

POSSIBLY, PROBABLY, OR LIKELY RELATED (N=35)

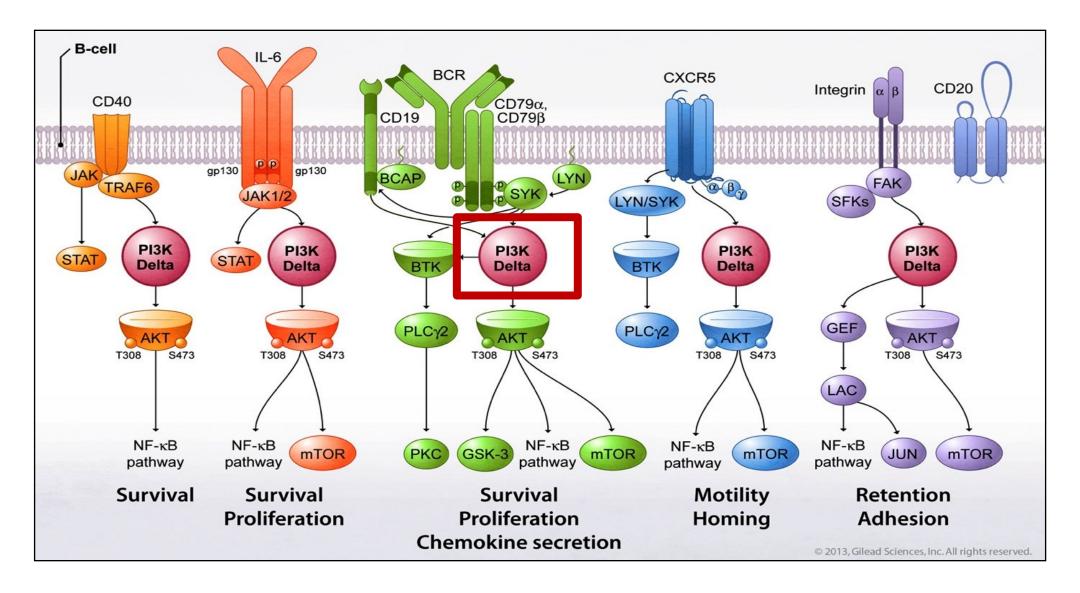
ADVERSE EVENT	≥GRADE 2	GRADE 3	GRADE 4
THROMBOCYTOPENIA	6 (17.1%)	3 (8.6%)	0 (0.0%)
NEUTROPENIA	6 (17.1%)	2 (5.7%)	1 (2.8%)
HEMATOMA	1 (2.9%)	0 (0.0%)	0 (0.0%)
EPISTAXIS	1 (2.9%)	0 (0.0%)	0 (0.0%)
STOMATITIS	1 (2.9%)	1 (2.9%)	1 (2.9%)
ATRIAL FIBRILLATION	1 (2.9%)	1 (2.9%)	0 (0.0%)

A randomized phase III study of Ibrutinib p.o. versus extended Rituximab i.v. therapy in patients with previously treated WM

ECWM-R1

European Waldenström's Macroglobulinemia Consortium

ECWM-R1 / Relapse


Rituximb 375 mg/m² IV weekly for 4 consecutive weeks – week 1-4 and week 13-16 <u>plus Placebo</u>

Rituximab plus oral Ibrutinib 420 mg qD continuously until evidence of progressive disease <u>plus Ibrutinib</u>

Rituximab refractory: oral Ibrutinib 420 mg qD continuously until evidence of progressive disease (observational arm only, max 35 pts!)

<u>Crossover</u>: Patients who are randomized in the rituximab arm and demonstrate progressive disease, will be allowed to receive ibrutinib

PI3Kδ Inhibition Impacts Multiple Critical Pathways in iNHL

The NEW ENGLAND JOURNAL of MEDICINE

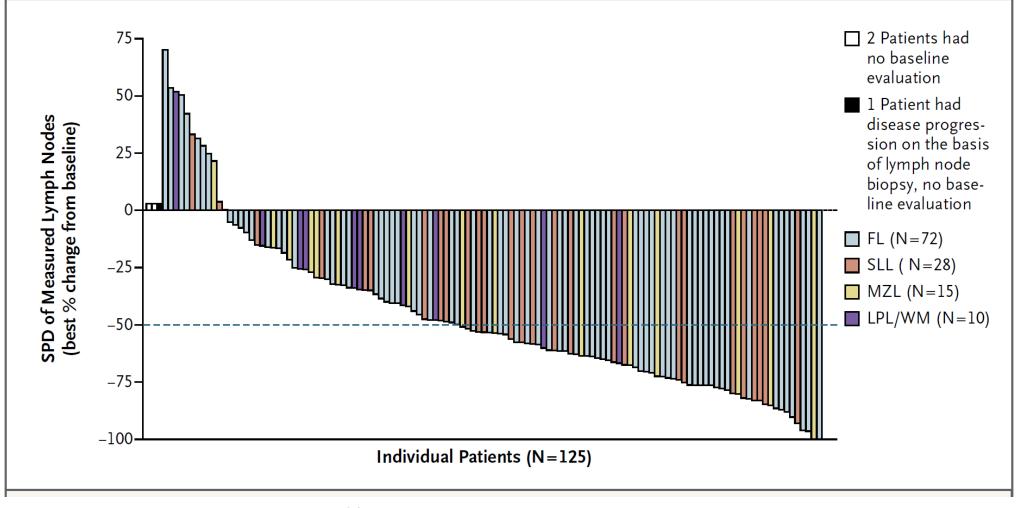
ORIGINAL ARTICLE

PI3Kδ Inhibition by Idelalisib in Patients with Relapsed Indolent Lymphoma

Ajay K. Gopal, M.D., Brad S. Kahl, M.D., Sven de Vos, M.D., Ph.D., Nina D. Wagner-Johnston, M.D., Stephen J. Schuster, M.D., Wojciech J. Jurczak, M.D., Ph.D., Ian W. Flinn, M.D., Ph.D., Christopher R. Flowers, M.D., Peter Martin, M.D., Andreas Viardot, M.D., Kristie A. Blum, M.D., Andre H. Goy, M.D., Andrew J. Davies, M.R.C.P., Ph.D., Pier Luigi Zinzani, M.D., Ph.D., Martin Dreyling, M.D., Dave Johnson, B.S., Langdon L. Miller, M.D., Leanne Holes, M.B.A., Daniel Li, Ph.D., Roger D. Dansey, M.D., Wayne R. Godfrey, M.D., and Gilles A. Salles, M.D., Ph.D.

Phase 2 Idelalisib Monotherapy in Refractory iNHL (Study 101-09)

• Primary endpoint:


Overall Response Rate (ORR)

• Secondary endpoints:

- Duration of Response (DOR)
- Progression Free Survival (PFS)
- Overall Survival (OS)
- Safety
- Quality of life

Long Term follow-up

Study 101-09 Waterfall Plot Lymph Node Response

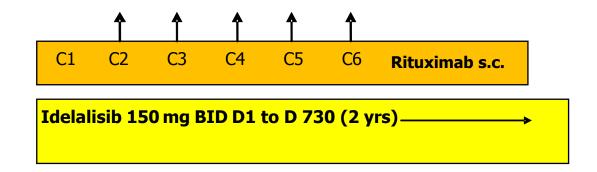

•90% had improvement in lymphadenopathy
•57% had ≥50% decrease from baseline

Table 2.1.1.4: Overall Response Rate (ORR) - by Disease ITT Analysis Set

	FL (N=72)	SLL (N=28)	WM (N=10)	MZL (N=15)	Total (N=125)
	(II) I /		10 207		,
ndependent Review Committee (IRC)					
Assessments Best Overall Response					
Rate (%)					
Complete Response	6 (8.3%)	0	0	1 (6.7%)	7 (5.6%
Partial Response	33 (45.8%)	17 (60.7%)	7 (70.0%)	6 (40.0%)	63 (50.4%
Minor Response	0	0	1 (10.0%)	0	1 (0.88
Stable Disease	24 (33.3%)	10 (35.7%)	1 (10.0%)	7 (46.78)	42 (33.68
Progressive Disease	8 (11.1%)	0	1 (10.0%)	1 (6.7%)	10 (8.0%
Not Evaluable	1 (1.4%)	1 (3.6%)	0	0	2 (1.6%
Missing	0	0	0	0	0
ORR (%) [a]	39 (54.2%)	17 (60.7%)	8 (80.0%)	7 (46.7%)	71 (56.8%
95% CI (%) [b]	42 - 66	40.6 - 78.5	44.4 - 97.5	21.3 - 73.4	47.6 - 65.6
nvestigator Assessments Best					
Overall Response Rate (%)					
Complete Response	5 (6.9%)	0	0	2 (13.3%)	7 (5.68
Partial Response	37 (51.4%)	16 (57.1%)	7 (70.0%)	4 (26.7%)	64 (51.2%
Minor Response	0	0	1 (10.0%)	0	1 (0.8%
Stable Disease	21 (29.2%)	10 (35.7%)	1 (10.0%)	9 (60.0%)	41 (32.8%
Progressive Disease	8 (11.1%)	2 (7.1%)	1 (10.0%)	0	11 (8.8%
Not Evaluable	1 (1.4%)	0	0	0	1 (0.8%
Missing	0	0	0	0	0
ORR (%) [a]	42 (58.3%)	16 (57.1%)	8 (80.0%)	6 (40.0%)	72 (57.6%
95% CI (%) [b]	46.1 - 69.8	37.2 - 75.5	44.4 - 97.5	16.3 - 67.7	48.4 - 66.4
Agreement (%) [c]	76.4	96.4	100	93.3	84.8

ECWM-R3 relapsed WM

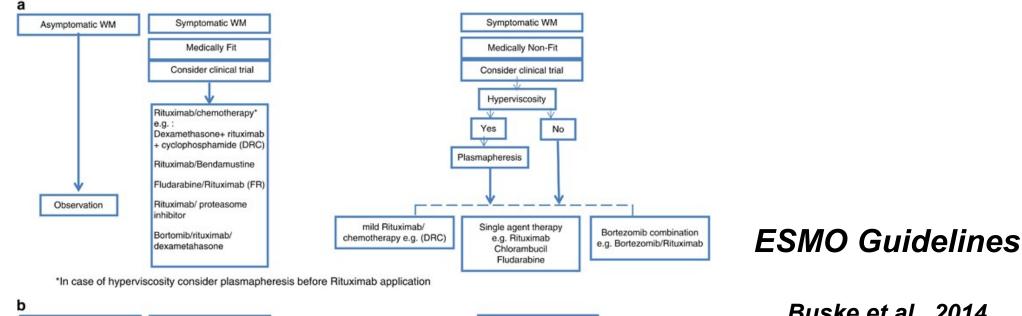
An Open Label non-randomized Phase II Study exploring "outpatient chemo-free" treatment association with Idelalisib + subcutaneous rituximab in Patients with relapsed/refractory Waldenstrom's Macroglobulinemia (WM)

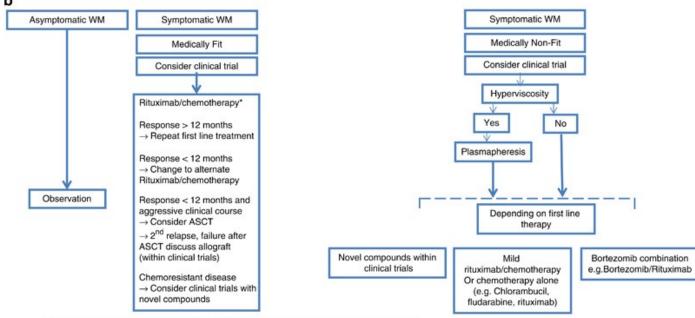
Primary end point: PFS (from 15 months to 30 months; 50 pts) Start Q2 2015

Sponsor ECWM/French CLL/WM Intergroup

European Consortium for Waldenström's Macroglobulinemia ECWM - Trials 2014/2015

Trials First Line

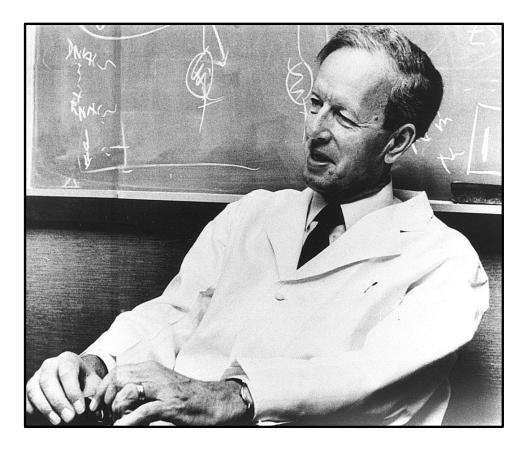

<u>ECWM-1 (Phase III)</u> DRC versus Bortezomib-DRC European, 80 centers recruiting


Relapse

<u>ECWM-R1 (Phase III):</u> Rituximab + Placebo vs Rituximab plus Ibrutinib Global, 59 centers Activation in Germany Nov/Dec 2014

<u>ECWM-R2</u> Ixazomib/Rituximab/Dexa <u>ECWM-R3</u> Idelalisib/Rituximab

Treatment Algorithms - WM



Buske et al., 2014

*In case of hyperviscosity consider plasmapheresis before Rituximab application

Indolent B - NHL Hopefully a bright future

1963

1944

Many Thanks!